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Abstract 
A harmonic valence-force-field rigid-ion lattice- 
dynamical model fitted to Raman and IR spectral 
data and extended throughout the whole Brillouin 
zone has been used to calculate the atomic displace- 
ment parameters, entropy and molar heat capacity 
for corundum (a-A1203) and bromellite (BeO). The 
agreement with experimental data is good. 

Introduction 
In the last few years, the importance and physical 
significance of crystallographic atomic thermal par- 
ameters (or atomic displacement parameters, a.d.p.s) 
have been emphasized by chemists and physicists 
[see, for example, Pilati, Bianchi & Gramaccioli 
(1990b) and references therein]; at the same time, 
considerable interest in this subject has also been 
developed by mineralogists [see, for example, Downs, 
Gibbs & Boisen (1990) and references therein]. 

It is well known (Willis & Pryor, 1975) that theoreti- 
cal estimates of a.d.p.s can be best obtained from 
lattice dynamics, following the procedure first 
described by Born &von Karman (1912, 1913) using 
a conveniently sampled set of values of the wave 
vector q in the Brillouin zone [corresponding to the 
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reciprocal unit cell of the crystal; a recent discussion 
of such sampling is given by Pilati, Bianchi & Gramac- 
cioli (1990c)]. For a particular value of q and for a 
harmonic model, the average energy E,Q of each 
normal mode (~q) of frequency u is 

E,q=hv{½+[exp (hv / kT ) - l ] - l } ,  (1) 

where h and k are the Planck and Boltzmann con- 
stants, respectively, and T is the absolute tem- 
perature. The limit as u --> 0 of the above expression is 

l imE ,  q = l i m [ k T / e x p ( h v / k T ) ] ,  (2) 
v--,0 v--,0 

which shows that the contribution to vibrational 
energy grows when the frequency is decreased. This 
happens because the lowest vibrational-energy levels 
are more populated than the highest levels, a 
phenomenon that is enhanced for low temperatures. 

From these data and the mass-adjusted polarization 
vectors ep,,q of the atom p in the unit cell, which are 
part of the eigenvectors of the dynamical matrices 
D(q), the a.d.p.s Up can be obtained as 

• e * T  Up = (Nmp) -~ ~, E~q(2WV~q)-2%,~q p,~q, (3) 
6q 

where N is the total number of unit cells in the crystal. 
The simulations are extended to all the vibrational 
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modes (q~) for a certain value of the wave vector q 
and to all the sampled points in the Brillouin zone, 
each of which corresponds to a particular value of q 
(in principle, every possible value of q in the Brillouin 
zone should be considered). The elements of the 
dynamical matrices are given by sums of the second 
derivatives (with respect to the mass-weighted 
coordinates) of the interaction energy between the 
atoms in the crystal multiplied by a phase factor 
exp(27riq. Ax) [Willis & Pryor (1975), equation 
3.10(b)]. In turn, this interaction energy is given by 
a Coulombic contribution and by a valence-bond 
deformation (plus, sometimes, a van der Waals inter- 
action between non-bonded atoms). 

Besides the a.d.p.s, the same lattice-dynamical pro- 
cedure permits evaluation of very important data, 
such as thermodynamic functions as a function of 
temperature. For instance, the molar heat capacity cv 
and the entropy S are given by 

c~=3R ~, g~Av(hv/kT) 2 

xexp (hv/kT)/[exp ( h v / k T ) -  1] 2 

S = E v i b / T - 3 R  ~, g~Av In [1 --exp (-hv/kT)].  
v 

(4) 

(5) 

Here, Evib is the (temperature-dependent) vibrational 
energy of the crystal and g~ is a normalized density-of- 
states function (Y~ g~Av = 1); the summation 5-'. could 
be carded out as in (3) for every value of $ and q 
but, owing to the absence of anisotropic effects in the 
results, it can also be carded out directly on the 
density-of-states function (see also Pilati et al., 
1990b). 

The procedure of using the density of states 
becomes quite advantageous if the calculations are 
performed for different temperatures, since the 
lengthy process of building and diagonalizing the 
dynamical matrices can be performed only once. For 
anisotropic a.d.p.s, which cannot be obtained from 
the density of states g~ alone, the eigenvectors of the 
dynamical matrices also need to be stored. 

If these simplifications are adopted, the vibrational 
frequencies must be considered to be independent of 
temperature. Instead, if different sets of dynamical 
matrices are diagonalized (one set corresponding to 
the observed crystal structure at a particular tem- 
perature T and pressure P), the calculated frequen- 
cies can be rendered temperature (and pressure) 
dependent provided force fields depending on atomic 
distances are used in connection with the variation 
of the structural parameters. 

Recently, successful models essentially based on 
Debye's theory with additional optic-mode contribu- 
tions, determined on the basis of IR and Raman 
spectra (Kieffer, 1979, 1980, 1982, 1985), have been 
proposed to evaluate temperature-dependent ther- 

modynamic functions for a variety of minerals 
(mostly silicates and oxides, including corundum). 
However, there are several good reasons to use the 
Born-von Karman procedure whenever possible: 

(1) It is more advanced and considerably less sim- 
plified in principle. Therefore, at least in general, we 
should expect an improved agreement with the 
experimental data. This agreement is confirmed by 
extensive and successful use of the Born-von Karman 
lattice-dynamical procedures in solid-state physics. 

(2) The same force fields from which the second 
derivatives of energy are obtained for use in the 
dynamical matrices could also be employed for theo- 
retical modelling of crystal structures (on a minimum- 
energy basis) or for evaluation of elastic properties: 
on this basis, there is a possibility of the use of a 
unique consistent field for all purposes. There is even 
the possibility of combining the vibrational contribu- 
tion to entropy with the estimates of potential energy 
and vibrational energy, so that a theoretical crystal 
structure corresponding to a free-energy minimum 
can be derived (see, for example, Filippini & Gramac- 
cioli, 1981). 

The connection with minimization of potential 
energy is particularly important: too often, in fact, 
only first derivatives are considered in minimization 
procedures and for this reason inconsistent results 
may be obtained. For instance, by examining second 
derivatives we have shown (Gramaccioli & Pilati, 
1992) that some of the best models reported for 
forsterite (ce-Mg2SdO4) in the literature do not corre- 
spond to true energy minima, in spite of having zero 
first derivatives of energy with respect to both atomic 
coordinates and unit-cell parameters. Since the best 
routines available for energy minimization (e.g. 
WMIN: Busing, 1981) permit a choice between the 
steepest-descent method and other methods, such as 
the Rosenbrock or Newton-Raphson methods, which 
are not limited to first derivatives only, caution should 
be taken in selecting the best procedure. 

(3) In applying Debye's model, it is necessary in 
each case to operate a posteriori, by fitting the theoreti- 
cal function to the experimental values of the molar 
heat capacity. This is necessary to obtain the so-called 
Debye temperature 0 of a particular substance, which 
is linked to the assumed maximum vibrational 
frequency v(D) in the crystal: 0 = v(D)/k, where k 
is the Boltzmann constant. Apparently (particularly 
in view of the gross approximation involved), it is 
not possible to predict this temperature exactly for a 
particular crystal. 

(4) In Kieffer's model, no provision is made for 
Raman- or IR-inactive modes or for active modes not 
corresponding to a measurable intensity. There is no 
reason, in fact, why the contribution of these modes 
(and of the corresponding branches in the Brillouin 
zone) should be negligible with respect to the others. 
For corundum, for instance, the Alu and the A2g 
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modes are both Raman and IR inactive; this is also 
true for the B2 modes in bromellite. 

(5) If the force-field constants prove to be transfer- 
able, at least within groups of similar minerals, then 
the derivation of the a.d.p.s and of the values of 
thermodynamic functions could proceed a priori,  
starting from crystal-structure data only. In principle, 
even these data would not be necessary if the force- 
field model is good enough to reproduce the structure. 
In short, if such procedures are successful for a 
sufficient number of cases, and with evaluation of the 
free energy possible, this could be a way of deducing 
the existence and the stability field of a certain phase. 

For all these reasons, from our previous experience 
on molecular crystals (Gramaccioli, 1987) and on 
forsterite (Pilati et al., 1990b), we have examined 
corundum and bromellite as particularly interesting 
subjects for investigation. These substances have the 
simplest structures involving octahedrally coordi- 
nated aluminium or beryllium bonded to oxygen and, 
if satisfactory empirical force fields are derived, which 
are able to be transferred, there is the possibility of 
extending these routines and force fields to a con- 
siderable number of other compounds, in particular, 
silicates or more complex oxides. 

Since the experimental measurements of vibration 
frequencies presently available are nearly exclusively 
Raman and/or  IR data, the possibility of deriving a 
lattice-dynamical model and an empirical force field 
valid in the whole Brillouin zone by fitting the ob- 
served Raman- and IR-active frequencies only would 
be particularly important. For forsterite, in fact, we 
have found (Pilati et al., 1990b) that Iisshi's (1978a) 
field derived from the best fit with the Raman and 
IR spectra is also valid for interpretation of the 
phonon-dispersion curves, measured by Ghose, 
Hastings, Corliss, Rao, Chaplot & Choudhury (1987), 
which validates the proposed model. 

A further advantage of the use of corundum and 
bromellite is that thermodynamic data of good quality 
are available in the literature (Furukawa, Douglas, 
McCookey & Ginnings, 1956; Chase, Curnutt, Hu, 
Prophet, Syverrud & Walker, 1974; Robie, Heming- 
way & Fisher, 1978), together with a number of papers 
concerning measurements and interpretation of 
Raman and IR spectra (Porto & Krishnan, 1967; Loh, 
1968; Arguello, Rousseau & Porto, 1969; Gervais & 
Piriou, 1974; Gervais, Billard & Piriou, 1975; Iishi, 
1978b; Kouroklis, Sood, Hochhiemer & Jayaraman, 
1985) and of accurate measurements of atomic ther- 
mal parameters (Pryor & Sabine, 1964; Sabine & 
Hogg, 1969; Downs, Ross & Gibbs, 1985; Hazen & 
Finger, 1986). Even for corundum, there are par- 
ticularly accurate measurements of the a.d.p.s (Spack- 
man, Stewart & Le Page, 1981; Lewis, Schwarzenbach 
& Flack, 1982; Kirfel & Eichhorn, 1990). For bromel- 
lite, phonon-dispersion curves are also available 
(Brugger, Strong & Carpenter, 1967; Ostheller, 

Schmunk, Brugger & Kearney, 1968), together with 
their interpretation in terms of a valence-force-field 
(VFF) rigid-ion model (Ramani, Mani & Singh, 
1976). 

The reason why a Born-von Karman lattice- 
dynamical model has not been frequently used lies, 
at least in our opinion, in the difficulties of such 
calculations, especially if sophisticated versions like 
the so-called shell model or other models involving 
ion polarizability are used. Here our calculations are 
limited to the comparatively simple rigid-ion model, 
where the atomic charges are assumed not to vary 
during motion and the centres of charge distribution 
are assumed to coincide with the atomic centres at 
any instant. 

This assumption can be subject to criticism, since 
the rigid-ion model is well known to be inadequate 
for a satisfactory lattice-dynamical treatment of sub- 
stances where the atomic charges are not small. This 
inadequacy is especially evident in evaluating some 
properties such as the dielectric constant (Cochran, 
1973). The discrepancy between the results from a 
rigid-ion model and the experimental data appears 
to be large for the highest frequencies, whereas there 
is good agreement for lower frequencies. A classic 
example for this is given by the phonon-dispersion 
curves of alkali halides (see, for example, Woods, 
Cochran & Brockhouse, 1960; Cochran, 1973). 
Another good example is given by the curves for 
forsterite, where the lower branches of the measured 
curves were satisfactorily interpreted by Rao, 
Chaplot, Choudhury, Ghose, Hastings & Corliss 
(1988) using a rigid-ion model; even a rigid-group 
model for the SiO4 tetrahedron was sufficient for these 
purposes. 

Because of the good agreement with the lower 
frequencies, the rigid-ion model might be quite useful, 
in spite of its limitations. For instance, as we have 
seen for the a.d.p.s [see (2) and (3) above], at least 
if the temperature is not too high, the highest vibra- 
tional levels are substantially empty and, for this 
reason (for pure compounds and apart from spin- 
ordering effects, absent here), the values of thermody- 
namic functions are essentially determined by the 
lowest vibrational levels. 

The above explains the satisfactory agreement we 
have obtained using a rigid-ion model in calculating 
the a.d.p.s and thermodynamic functions for forsterite 
(Pilati et al., 1990b), and justifies the use of similar 
models in further works of this kind. 

In spite of the greater success of the shell model, 
which has also been used to reproduce the experi- 
mental values of thermodynamic functions for for- 
sterite (Price, Parker & Leslie, 1987), for this model  
and its more advanced versions where non- 
Coulombic interactions extend beyond the next 
neighbours, besides the obvious complexity of the 
calculations, a serious inconvenience is given by 'the 
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large number of free parameters and the unreal values 
some of them sometimes assume when they are deter- 
mined by least-squares analysis of experimental dis- 
persion curves' (Ghose, 1985). Needless to say, we 
agree with this statement; on the other hand, we do 
not claim to perform a complete lattice-dynamical 
analysis and for this reason our attention (and con- 
clusions) will be essentially limited to the values of 
a.d.p.s and of thermodynamic functions. 

Calculation procedure 

For our calculations, the same routines used by us 
for forsterite (Pilati, Bianchi & Gramaccioli, 
1990a, b, c) were adopted. The only addition to our 
set of computer programs was the possibility of 
improvement of the force field through a best-fit basis 
to the observed Raman- and IR-active frequencies v 
by minimization of the function ~iwi (Vi(~,bs)-- 
vi(ca~c)) 2, where the weights w~ are given by 1/V~(obs). 
This weighting scheme was chosen to emphasize the 
importance of the lower frequencies, as mentioned 
above. For the process of minimization itself, the 
program VAO4A (QCPE program no. 60) based on 
a generalization of the least-squares method (Powell, 
1965) was adopted. 

Another addition concerns a delicate problem, 
which had never appeared in our former calculations 
on molecular crystals even for forsterite: this problem 
arises when three-body interactions (as, for instance, 
bond-angle bending) extend throughout an indefinite 
chain. For a molecule (or for an isolated 'molecular' 
group like the SiO4 tetrahedron), the situation is much 
simpler, since all the bond angles (corresponding to 
non-zero force constants) can be codified to take place 
within the same set of atoms, whereas in the general 
case attention should be given to the difference 
between atoms related to each other by unit-cell trans- 
lations: these atoms should not be considered as 
equivalent for a non-integral value of the wave 
vector q. 

In calculating the second derivatives, the complica- 
tion of three-body interactions has been solved by 
introducing additional atoms l, each related to the 
atom p' by the unit-cell translation Ar(p', l). The 
derivatives with respect to the VFF coordinates are 
then referred to the coordinates of the corresponding 
atoms p and p' in the unit cell: during this operation, 
the results are multiplied by the phase factor 
exp [2~riq. Ar(p', l)]. Thus, the expression becomes 

~PP'= StKS r exp [27riq • Ar(p',/)], (6) 

where the components of ~PP" (the force-constant 
matrix involving the atoms p and p') are given by 

@~P' = O2 E / Ox~Ox~ '. (7) 

K is a force-constant matrix with respect to VFF 
variables (e.g. bond-angle bending, bond stretching) 

Table 1. Parameters of the force fields used 

Stretching force constants  (10 -8 N/~,-~; d in/~,) 

AI-O 1.404-1.581 (d: 1.914) 
Be-O 1.897 

Bending force constants  (10 - s  N ,8, rad -2) 

O-AI-O 0.54318 
O-Be-O 0.21555 

St re tching-s t re tching  force cons tants  (10 -8 N/~,-~) 

AI-O bonds joined to the same Ai atom -0.01675 
Be-O bonds joined to the same Be atom 0.06812 

S t re tch ing-bend ing  force cons tants  (10 -8 N r a d -  1) 

AI-O bonds and O-AI-O angles centred on the same AI atom 0.16615 
Be-O bonds and O-Be-O angles centred on the same Be atom 0.08536 

B e n d i n g - b e n d i n g  force cons tants  (10 -8 N A rad -2) 

O-AI-O angles sharing a side -0.02577 
O-AI-O angles sharing the AI atom only -0.06766 

Atomic  charge  (in electron units) 

Z(AI) = -1.455 
Z(Be) = -0.97 
Z (O)=  0.97 

and the components of S and St are the first deriva- 
tives of these VFF variables with respect to the atomic 
coordinates of the atoms p and I. 

This method becomes particularly useful and easy 
to use (with no additional coding necessary) in the 
most general case and also allows for the possibility 
of using any kind of interaction constants (e.g. bend- 
ing-stretching, stretching-stretching). For corundum 
and bromellite, this procedure becomes essential, 
owing to the presence of a network of bond angles 
extending along the three dimensions throughout the 
crystal and to the particular importance of bond-angle 
bending and of interaction constants in these com- 
pounds (see below). 

Results and discussion 

In Iishi's (1978b) work, the IR and Raman spectra 
of corundum were interpreted on the basis of various 
Urey-Bradley models, each of them in turn applied 
to short-range (SR), rigid-ion (RI) and two variants 
of polarizable-ion (PI1 and PI2) lattice-dynamical 
models. Apparently, none of these models have been 
extended beyond the origin of the Brillouin zone. 
Owing to the octahedral bond set around the A1 atom, 
it was not clear how to use Iishi's Urey-Bradley force 
fields in our program in perfect agreement with the 
author. For this reason, it was easier for us to derive 
a new VFF using the minimization routine described 
above: the data on this field are given in Table 1. 
Differently from other cases, where the interaction 
constants are of relatively minor importance, here 
their use, especially for bending-stretching constants, 
is essential to obtain a reasonable fit to the observed 
values. This is probably due to the relatively low value 
of the A1-O stretching-force constants and to the 
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Table 2. V i b r a t i o n  f r e q u e n c i e s  a t  q = 0 (cm -1) 

Column 1 shows the experimental measurements: for corundum, 
Raman data are from Porto & Krishnan (1967); IR data from 
Gervais & Piriou (1974) and Gervais et ai. (1975); for bromellite, 
the experimental data are from Loh (1968) and Arguello et al. 
(1969). Column 2 shows our calculated data. Column 3 reports 
the corresponding values of Iishi (1978b) (corundum, rigid-ion 
model) and Ramani et al. (1976) (bromellite, A3 model). The R 
index at the end of the calculated values shows the agreement with 
the experimental data. The experimental data are from Gieske & 
Barsch (1968) and from Cline et al. (1967) for corundum and 
bromellite, respectively. 

Obs. Calc. (1) Caic. (2) 
Corundum 

Atg 418 422 455.2 
645 645 659.2 

Eg 378 396 380.3 
432 431 442.1 
451 472 472.3 
578 560 531.0 
751 689 733.2 

A2. TO 400 417 395.5 
584 580 574.2 

E~ TO 385 387 394.0 
439 454 454.2 
570 590 595.8 
635 653 665.7 

A2u LO 514 419 401.3 
887 849 860.6 

E u LO 388 391 383.9 
482 486 426.0 
631 654 652.3 
908 838 846.9 

Atu 493 
623 

A2g 379 
528 
711 

R 0.041 0.050 

Bromellite 
E 1 TO 725 736 713 
E2 340 343 440 

680 685 696 
A I TO 684 700 692 
E t LO 1095 1067 1095 
A 1LO 1085 1042 1082 
B2 580 

881 
R 0.025 0.032 

relatively high value of  the O - A I - O  bond-bend ing  
constants,  account ing for the presence of  a consider- 
able number  of  vibrat ional  modes involving simul- 
taneous bond  bending  and  stretching. It has also been 
useful to assume a l inear  dependence  of  the AI-O 
stretching constant  upon  bond  distance: here (see 
Table 1), the coefficient is negative, in agreement  with 
the tendency of  the longest bonds  to become weaker, 
and the average AI-O bond  distance in this structure 
is 1.914 A,. 

The good agreement  of  our calculat ions with the 
measured  frequencies is evident  in Table 2, where the 
exper imenta l  measurements  of  Raman-  and IR-active 
frequencies are reported (first column),  together with 
the results of  our calculat ions (second column),  and 
the corresponding results obta ined by Iishi 's rigid-ion 
model.  As for crystal lographic calculations,  the agree- 

ment  is given here in the form of  an R index [R = 
~-~ [Vobs-- Pca lc l /X /Jobs]" 

For bromell i te ,  a s ix-parameter  VFF for interpret- 
ing the vibrat ional  f requencies  with the rigid-ion 
model  was given by Raman i  et  al. (1976); this field 
includes bond-bending ,  bending-s t re tch ing  and 
b e n d i n g - b e n d i n g  contr ibut ions and  the agreement  
with the exper imenta l  data  is better than for any 
previous model .  With appl ica t ion of  our best-fit pro- 
gram to the Raman  and IR data, a four-parameter  
VFF giving a good agreement  with these data could 
be easily found (see Tables 1 and 2). Al though the 
number  of  IR- and Raman-act ive  frequencies to be 
fitted does not greatly exceed the number  of  constants 
to be derived, the agreement  of  these models  with a 
considerable  n u m b e r  of  addi t ional  data, like the 
phonon-d ispers ion  curves (see below), in our opin ion  
renders them physical ly  acceptable.  

The atomic charge assigned to the O atoms in 
co rundum or bromell i te  by Iishi (1978b) and  Raman i  
et  al. (1976) is 0.955 and 1.04, respectively, in electron 
units. In view of  the s imilar i ty between these values, 
of  the identical  value of  the electronegativity of  Be 
and  Al and  of  further appl ica t ion  of  our field to 
complex oxides conta ining both these metals,  such 
as chrysoberyl  (BeA1204) , a unique  value (0.97e) has 
been assigned to the O atoms in these two compounds .  

With our VFF models ,  the phonon-d ispers ion  cur- 
ves along [001] and [210]* ( - - [100])  were obta ined 
for co rundum and bromell i te:  the latter are reported 
in Fig. 1. The agreement  with the exper imental  data  
is satisfactory and  definitely better than for any pre- 
vious model ;  for corundum,  unfortunately,  no data 
of  this k ind are reported in the literature for com- 
parison. In any case, imaginary  frequencies  are 
absent. 

In Fig. 1, some ripples of  the acoustic branches  are 
reported close to the origin; they are due to the critical 
convergence of  the Ewald sums for q ~  0. Hence,  to 
obtain a correct value for the elasticity coefficients 
(Kittel, 1966) cons iderably  more detai led calculat ions 
may  be required;  however,  since the main  objectives 
of  our work are different, at least for the present  t ime 
we have not insisted on developing better routines 
for improving our results in this respect . t  

The calculated values for the a.d.p.s at different 
temperatures  (in the form of  U matrices, with the 
assumpt ion  that the frequencies  are constant)  are 
reported in Table  3, together with the corresponding 

t In Table l(a), some examples of the calculated elasticity 
coefficients are reported, together with the corresponding experi- 
mental data reported by Cline, Dunegan & Henderson (1967) for 
bromellite and by Gieske & Barsch (1968) for corundum; the 
agreement is within an order of magnitude. This table has been 
deposited with the British Library Document Supply Centre as 
Supplementary Publication No. SUP55667 (2 pp.). Copies may be 
obtained through The Technical Editor, Interactional Union of 
Crystallography, 5 Abbey Square, Chester CHI 2HU, England. 
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experimental values obtained by Spackman et al. 
(1981), Lewis et al. (1982) and Kirfel & Eichhorn 
(1990) for corundum and by Pryor & Sabine (1964), 
Sabine & Hogg (1969), Downs et al. (1985) and Hazen 
& Finger (1986) for bromellite. The agreement is very 
good, especially for the most accurate experimental 
data. 

A lattice-dynamical calculation of the Debye- 
Waller parameters at room temperature (300 K) was 
performed by Hewat (1972). According to this calcu- 
lation, the parameters for the Be and O atoms should 
be equal (B = 0.27 A2), in contrast to the experimental 
results obtained by Downs et al. (1985), which are 
confirmed by us. 

For corundum, the values at 4 K practically 
coincide with the zero-point motion: they amount to 
about 60% of the corresponding room-temperature 
data, a figure still higher than that for forsterite (Pilati 
et al., 1990b). 
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Fig. 1. Lower branches of phonon-dispersion curves for bromellite 
along [001] (left) and [2i0]* (tight). The heavy continuous 
curves are the experimental values found by Ostheller et at. 
(1968) and reported by Ramani et al. (1976), together with the 
results of their calculations (light continuous curves); our values 
are reported as heavy dashed curves. The tipples in proximity 
to the origin (light dotted curves) correspond to our calculations 
performed with an insufficient number of points in the reciprocal- 
lattice summations (max. sin O/A = 0.65 A-t  instead of our cur- 
rently used value of 0.85/~,-~). 

Together with the thermal-motion tensors Up 
(= (UpUf)), relative to the same atom p, the tensors 
Upq (= (upu~)) between different atoms p and q can 
be calculated from lattice dynamics and thermal cor- 
rections to the experimental bond lengths can be 
derived in the most general case using the procedures 
of Scheringer (1972) or Johnson (1980) (see also 
Filippini & Gramaccioli, 1989; Pilati et al., 1990b). 
For instance, for corundum at room temperature, the 
two shortest A1-O distances should be increased by 
0.022 A owing to this effect. 

In calculations of the values of thermodynamic 
functions reported in Table 4, since the experimental 
molar heat capacity is usually reported as cp and our 
lattice-dynamical results are obtained as co, the well 
known relationship 

cp - co = ,~ 2 T V l  fl (8) 

was used to compare these data. Here, a and/3 are 
the volume thermal-expansion coefficient and the 
isothermal compressibility coefficient, respectively (/3 
is the reciprocal of the so-called bulk modulus of the 
material): 

a = ( 1 / V ) ( O V / O T ) p  
(9) 

/3= - (  l l  V) (a  V l a P ) T .  

In turn, /3 is related to the elasticity coefficients 
(Nye, 1957), 

/3 = S I I " t - S 2 2 - I - S 3 3 - t - 2 ( S 1 2 - l - S I 3 " t - S 2 3 ) ,  (10) 

where sij are the compliances; the 6 x 6  matrix M 
whose elements are the compliances is the inverse of 
the matrix C whose components are the elastic 
stiffnesses (cij); for corundum both the s U and the c 0 
are reported in the literature (Mayer & Hiedemann, 
1961; Aleksandrov & Rizhova, 1961; Reddy, 1963; 
Gieske & Barsch, 1968). From these data, /3 can be 
estimated to be 4.74 x 10 -12 m 2 N-~; the experimental 
values for a as a function of temperature are given 
by Schauer (1965). 

For bromellite, experimental data reported as co 
up to 700 K are given by Chase et al. (1974) and 
Hofmeister, Hoering & Virgo (1987); these data were 
obtained from the experimental measurements of cp 
using (8), where the values for cr as a function of 
temperature are given by Skinner (1966). An experi- 
mental value for /3 can be obtained from Cline, 
Dunegan & Henderson (1967); this is in good agree- 
ment with the high-pressure crystallographic data 
reported by Hazen & Finger (1986). For higher tem- 
peratures, we have applied the same relationship to 
the measured cp data reported in the C R C  Handbook 
o f  Chemistry and Physics (1983). 

In general, there is good agreement between the 
calculated and the experimental values of the molar 
heat capacity, especially for corundum (within 1.3% 
between 150 and 1000 K). Since the frequencies are 
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Table 3. Observed and calculated atomic displacement parameters (U x 105) 

The temperature factor is in the form T~ = exp [-2"tr2( U l I h2a*2 + . . -  + 2 U23klb*c*)]. 
The values corresponding to the columns where temperature is indicated are results from our lattice-dynamical calculations. The 
experimental values are from the following sources. 
(a) Kirfel & Eichhorn (1990): multipole refinement; synchrotron data. 
(b) Spackman et al. (1981): multipole refinement. 
(c) Lewis et al. (1982): multipole refinement. 
(d) Hazen & Finger (1986): conventional refinement from powder neutron diffraction data. 
(e) Downs et al. (1985): multipole refinement of single crystal 3,-ray diffraction data with correction for extinction, from their model 
GSF.HO. 
( f )  Pryor & Sabine (1964): powder neutron diffraction data. 
(g) Sabine & Hogg (1969): single-crystal neutron diffraction data, not corrected for extinction. 
For corundum, the U tensor for oxygen here corresponds to the atom located at x, x, ¼. 

Corundum (a) (b) (c) 298 K 500 K 

AI Ut~ 242 (2) 319 (2) 257 (2) 278 415 
/./33 246 (3) 325 (3) 261 (10) 259 391 
Be q (/~2) 0.192 0.253 0.204 0.215 0.321 

O Utt 265 (3) 358 (4) 305 (13) 325 463 
Ut2 121 (1) 168 (5) 141 (7) 151 213 
U~3 33 (1) 33 (3) 34(6) 5 8 
U33 310 (4) 419 (4) 333 (15) 312 450 
Be q (/~2) 0.221 0.299 0.248 0.257 0.369 

aromellite (d) (e) ( f )  (g) 298 K 

Be U11 553 (170) 450 (10) 390 
U33 556 (93) 410 (20) 428 
Beq (/~k 2) 0.437 0.34 0.35 (6) 0.27 (8) 0.318 

O U H 304 (170) 330 (10) 312 
U33 370 (93) 320 (10) 346 
Beq (/~k 2) 0.257 0.260 0.27 (5) 0.53 (9) 0.256 

1000 K 4 K 

786 166 
739 161 

0.608 0.130 
854 220 
390 103 

15 2 
829 217 

0.680 0.176 

Table 4. Molar heat capacity (J mol -~ K -~) and vibrational energy (J mol -~) for corundum and bromellite at 
various temperatures (K) 

Experimental values for corundum from 4K up to room temperature from Furukawa et al. (1956), for higher temperatures from Robie 
et al. (1978). For bromellite, the data are taken from Chase et al. (1974) or from the C R C  Handbook of  Chemistry and Physics (1983) 
(as cp, corrected here) for temperatures above 700 K: at room temperature, there is appreciable discrepancy between these two sources 
and the value corresponding to the latter is reported between parentheses. 

Corundum Bromellite 

T (K) cp (obs.) cp (calc.) Evi b c o (obs.) c o (calc.) Evi b 

4 0.00 0.00 44.22 0.00 21.30 
50 1.51 1.34 44.27 0.17 0.25 21.30 

100 12.84 12.22 44.52 2.68 2.72 21.38 
150 31.97 32.05 45.61 8.33 21.63 
200 51.17 51.84 47.74 15.19 22.22 
298 78.99 79.87 54.27 25.40 (26.02) 26.65 24.31 
500 105.98 106.06 73.35 38.41 38.99 31.13 
750 118.49 117.61 101.09 44.85 44.52 41.67 

1000 124.98 125.35 121.13 49.25 46.78 53.14 
1250 129.16 127.44 130.42 52.93 47.86 64.98 

assumed to be temperature independent, the agree- 
ment at high temperature is not so good: for instance, 
above 1000 K, the calculated values become appreci- 
ably smaller than the experimental values. For corun- 
dum, the calculated value of the entropy S at room 
temperature (298 K) is 50.75 J m o l  -I K - l ,  compared 
with the experimental values of 50.96J mo1-1 K -1 
(Furukawa et al., 1956) and 50.83 J mol -~ K -~ (Robie 
et al., 1978): the agreement is therefore excellent, 
being within the presumable range (0.33) of the stan- 
dard deviation. For bromellite, the calculated value 
of entropy at room temperature is 14.56 J mo1-1 K -~, 
to be compared with the experimental values of 
13.77(4) and 14.10 J mo1-1 K -1 reported by Robie et 

al. (1978) and the C R C  Handbook of  Chemistry and 
Physics (1983), respectively. 

For corundum and bromellite, the zero-point con- 
tributions to the vibrational energy at room tem- 
perature are 81.5 and 87.6%, respectively; these are 
in line with the zero-point-motion contributions to 
the a.d.p.s (see Table 3) and are not surprising when 
compared with similar results obtained for other sub- 
stances (Filippini & Gramaccioli, 1989; Pilati et al., 
1990b). 

Therefore, we have seen additional examples of 
derivation of thermal parameters and thermodynamic 
functions for crystalline substances from lattice 
dynamics and spectroscopic data. The agreement with 
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the experimental data obtained here confirms the 
validity of  crystallographic measurements and pro- 
cedures and demonstrates that it may be possible to 
obtain consistent empirical force fields that are useful 
for these purposes. 

The authors are particularly indebted to 
Dr Riccardo Bianchi for useful help and advice in 
writing and using the computer programs, as well as 
to Drs J. W. Downs and Suzanne Mulley for helpful 
discussions. 
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